Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey.
نویسندگان
چکیده
Many neurons in the monkey ventral premotor area F5 discharge selectively when the monkey grasps an object with a specific grip. Of these, the motor neurons are active only during grasping execution, whereas the visuomotor neurons also respond to object presentation. Here we assessed whether the activity of 90 task-related F5 neurons recorded from two macaque monkeys during the performance of a visually-guided grasping task can be used as input to pattern recognition algorithms aiming to decode different grips. The features exploited for the decoding were the mean firing rate and the mean interspike interval calculated over different time spans of the movement period (all neurons) or of the object presentation period (visuomotor neurons). A support vector machine (SVM) algorithm was applied to the neural activity recorded while the monkey grasped two sets of objects. The original set contained three objects that were grasped with different hand shapes, plus three others that were grasped with the same grip, whereas the six objects of the special set were grasped with six distinctive hand configurations. The algorithm predicted with accuracy greater than 95% all the distinct grips used to grasp the objects. The classification rate obtained using the first 25% of the movement period was 90%, whereas it was nearly perfect using the entire period. At least 16 neurons were needed for accurate performance, with a progressive increase in accuracy as more neurons were included. Classification errors revealed by confusion matrices were found to reflect similarities of hand grips used to grasp the objects. The use of visuomotor neurons' responses to object presentation yielded grip classification accuracy similar to that obtained from actual grasping execution. We suggest that F5 grasping-related activity might be used by neural prostheses to tailor hand shape to the specific object to be grasped even before movement onset.
منابع مشابه
Monkey in the Ventral Premotor Area F5 of the Macaque Functional Properties of Grasping-Related Neurons
متن کامل
Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey.
We investigated the motor and visual properties of F5 grasping neurons, using a controlled paradigm that allows the study of the neuronal discharge during both observation and grasping of many different three-dimensional objects with and without visual guidance. All neurons displayed a preference for grasping of an object or a set of objects. The same preference was maintained when grasping was...
متن کاملPredicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.
UNLABELLED Neural networks of the brain involved in the planning and execution of grasping movements are not fully understood. The network formed by macaque anterior intraparietal area (AIP) and hand area (F5) of the ventral premotor cortex is implicated strongly in the generation of grasping movements. However, the differential role of each area in this frontoparietal network is unclear. We re...
متن کاملSpace-dependent representation of objects and other's action in monkey ventral premotor grasping neurons.
The macaque ventral premotor area F5 hosts two types of visuomotor grasping neurons: "canonical" neurons, which respond to visually presented objects and underlie visuomotor transformation for grasping, and "mirror" neurons, which respond during the observation of others' action, likely playing a role in action understanding. Some previous evidence suggested that canonical and mirror neurons co...
متن کاملProcessing of Own Hand Visual Feedback during Object Grasping in Ventral Premotor Mirror Neurons.
UNLABELLED Mirror neurons (MNs) discharge during action execution as well as during observation of others' actions. Our own actions are those that we have the opportunity to observe more frequently, but no study thus far to our knowledge has addressed the issue of whether, and to what extent, MNs can code own hand visual feedback (HVF) during object grasping. Here, we show that MNs of the ventr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 188 شماره
صفحات -
تاریخ انتشار 2011